Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Expert Opin Ther Pat ; : 1-17, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38588538

RESUMEN

INTRODUCTION: Proprotein convertase subtilisin/kexin 9 (PCSK9) plays a crucial role in breaking down the hepatic low-density lipoprotein receptor (LDLR), thereby influencing the levels of circulating low-density lipoprotein cholesterol (LDL-C). Consequently, inhibiting PCSK9 through suitable ligands has been established as a validated therapeutic strategy for combating hypercholesterolemia and cardiovascular diseases. AREA COVERED: Patent literature claiming novel compounds inhibiting PCSK9 disclosed from 2018 to June 2023 available in the espacenet database, which contains more than 150 million patent documents from over 100 patent-granting authorities worldwide. EXPERT OPINION: The undisputable beneficial influence of PCSK9 as a pharmacological target has prompted numerous private and public institutions to patent chemical frameworks as inhibitors of PCSK9. While several compounds have advanced to clinical trials for treating hypercholesterolemia, they have not completed these trials yet. These compounds must contend in a complex market where new, costly, and advanced drugs, such as monoclonal antibodies and siRNA, are prescribed instead of inexpensive and less potent statins.

2.
Front Chem ; 12: 1362992, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440776

RESUMEN

This comprehensive review, covering 2021-2023, explores the multifaceted chemical and pharmacological potential of coumarins, emphasizing their significance as versatile natural derivatives in medicinal chemistry. The synthesis and functionalization of coumarins have advanced with innovative strategies. This enabled the incorporation of diverse functional fragments or the construction of supplementary cyclic architectures, thereby the biological and physico-chemical properties of the compounds obtained were enhanced. The unique chemical structure of coumarine facilitates binding to various targets through hydrophobic interactions pi-stacking, hydrogen bonding, and dipole-dipole interactions. Therefore, this important scaffold exhibits promising applications in uncountable fields of medicinal chemistry (e.g., neurodegenerative diseases, cancer, inflammation).

3.
RSC Adv ; 14(8): 5542-5546, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38352680

RESUMEN

Caerulomycins, natural alkaloids with antimicrobial properties, have been previously synthesized starting with highly pre-functionalized building blocks or requiring many functional group manipulations. In this work, we report the first total synthesis of caerulomycin K, a diversely trifunctionalized pyridine readily assembled in three steps exploiting the recent advancements in the C-H activation of N-heterocycles.

4.
Biomolecules ; 13(9)2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37759739

RESUMEN

The main protease (Mpro) plays a pivotal role in the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is considered a highly conserved viral target. Disruption of the catalytic activity of Mpro produces a detrimental effect on the course of the infection, making this target one of the most attractive for the treatment of COVID-19. The current success of the SARS-CoV-2 Mpro inhibitor Nirmatrelvir, the first oral drug for the treatment of severe forms of COVID-19, has further focused the attention of researchers on this important viral target, making the search for new Mpro inhibitors a thriving and exciting field for the development of antiviral drugs active against SARS-CoV-2 and related coronaviruses.

5.
Eur J Med Chem ; 260: 115730, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37633202

RESUMEN

The development of drugs for the treatment of advanced prostate cancer (PCA) remains a challenging task. In this study we have designed, synthesized and tested twenty-nine novel HDAC inhibitors based on three different zinc binding groups (trifluoromethyloxadiazole, hydroxamic acid, and 2-mercaptoacetamide). These warheads were conveniently tethered to variously substituted phenyl linkers and decorated with differently substituted pyrrolo-pyrimidine and purine cap groups. Remarkably, most of the compounds showed nanomolar inhibitory activity against HDAC6. To provide structural insights into the Structure-Activity Relationships (SAR) of the investigated compounds, docking of representative inhibitors and molecular dynamics of HDAC6-inhibitor complexes were performed. Compounds of the trifluoromethyloxadiazole and hydroxamic acid series exhibited promising anti-proliferative activities, HDAC6 targeting in PCA cells, and in vitro tumor selectivity. Representative compounds of the two series were tested for solubility, cell permeability and metabolic stability, demonstrating favorable in vitro drug-like properties. The more interesting compounds were subjected to migration assays, which revealed that compound 13 and, to a lesser extent, compound 15 inhibited the invasive behaviour of androgen-sensitive and -insensitive advanced prostate cancer cells. Compound 13 was profiled against all HDACs and found to inhibit all members of class II HDACs (except for HDAC10) and to be selective with respect to class I and class IV HDACs. Overall, compound 13 combines potent inhibitory activity and class II selectivity with favorable drug-like properties, an excellent anti-proliferative activity and marked anti-migration properties on PCA cells, making it an excellent lead candidate for further optimization.


Asunto(s)
Inhibidores de Histona Desacetilasas , Neoplasias de la Próstata , Masculino , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Purinas , Pirimidinas/farmacología , Ácidos Hidroxámicos , Histona Desacetilasas
6.
Org Biomol Chem ; 21(18): 3811-3824, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37078164

RESUMEN

COVID-19 now ranks among the most devastating global pandemics in history. The causative virus, SARS-CoV-2, is a new human coronavirus (hCoV) that spreads among humans and animals. Great efforts have been made to develop therapeutic agents to treat COVID-19, and among the available viral molecular targets, the cysteine protease SARS-CoV-2 Mpro is considered the most appealing one due to its essential role in viral replication. However, the inhibition of Mpro activity is an interesting challenge and several small molecules and peptidomimetics have been synthesized for this purpose. In this work, the Michael acceptor cinnamic ester was employed as an electrophilic warhead for the covalent inhibition of Mpro by endowing some peptidomimetic derivatives with such a functionality. Among the synthesized compounds, the indole-based inhibitors 17 and 18 efficiently impaired the in vitro replication of beta hCoV-OC-43 in the low micromolar range (EC50 = 9.14 µM and 10.1 µM, respectively). Moreover, the carbamate derivative 12 showed an antiviral activity of note (EC50 = 5.27 µM) against another hCoV, namely hCoV-229E, thus suggesting the potential applicability of such cinnamic pseudopeptides also against human alpha CoVs. Taken together, these results support the feasibility of considering the cinnamic framework for the development of new Mpro inhibitors endowed with antiviral activity against human coronaviruses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Antivirales/farmacología , Antivirales/química , Replicación Viral , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química
7.
Arch Pharm (Weinheim) ; 356(7): e2300174, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37119396

RESUMEN

The ubiquitin-proteasome pathway (UPP) represents the principal proteolytic apparatus in the cytosol and nucleus of all eukaryotic cells. Nowadays, proteasome inhibitors (PIs) are well-known as anticancer agents. However, although three of them have been approved by the US Food and Drug Administration (FDA) for treating multiple myeloma and mantel cell lymphoma, they present several side effects and develop resistance. For these reasons, the development of new PIs with better pharmacological characteristics is needed. Recently, noncovalent inhibitors have gained much attention since they are less toxic as compared with covalent ones, providing an alternative mechanism for solid tumors. Herein, we describe a new class of bis-homologated chloromethyl(trifluoromethyl)aziridines as selective noncovalent PIs. In silico and in vitro studies were conducted to elucidate the mechanism of action of such compounds. Human gastrointestinal absorption (HIA) and blood-brain barrier (BBB) penetration were also considered together with absorption, distribution, metabolism, and excretion (ADMET) predictions.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/uso terapéutico , Relación Estructura-Actividad , Antineoplásicos/farmacología , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Neoplasias/tratamiento farmacológico
8.
Molecules ; 28(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36903597

RESUMEN

The COVID-19 pandemic has given a strong impetus to the search for antivirals active on SARS-associated coronaviruses. Over these years, numerous vaccines have been developed and many of these are effective and clinically available. Similarly, small molecules and monoclonal antibodies have also been approved by the FDA and EMA for the treatment of SARS-CoV-2 infection in patients who could develop the severe form of COVID-19. Among the available therapeutic tools, the small molecule nirmatrelvir was approved in 2021. It is a drug capable of binding to the Mpro protease, an enzyme encoded by the viral genome and essential for viral intracellular replication. In this work, by virtual screening of a focused library of ß-amido boronic acids, we have designed and synthesized a focused library of compounds. All of them were biophysically tested by microscale thermophoresis, attaining encouraging results. Moreover, they also displayed Mpro protease inhibitory activity, as demonstrated by performing enzymatic assays. We are confident that this study will pave the way for the design of new drugs potentially useful for the treatment of SARS-CoV-2 viral infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Pandemias , Inhibidores de Proteasas/química , Antivirales/farmacología , Simulación del Acoplamiento Molecular
9.
Molecules ; 28(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36677572

RESUMEN

SARS-CoV-2 Mpro is a chymotrypsin-like cysteine protease playing a relevant role during the replication and infectivity of SARS-CoV-2, the coronavirus responsible for COVID-19. The binding site of Mpro is characterized by the presence of a catalytic Cys145 which carries out the hydrolytic activity of the enzyme. As a consequence, several Mpro inhibitors have been proposed to date in order to fight the COVID-19 pandemic. In our work, we designed, synthesized and biologically evaluated MPD112, a novel inhibitor of SARS-CoV-2 Mpro bearing a trifluoromethyl diazirine moiety. MPD112 displayed in vitro inhibition activity against SARS-CoV-2 Mpro at a low micromolar level (IC50 = 4.1 µM) in a FRET-based assay. Moreover, an inhibition assay against PLpro revealed lack of inhibition, assuring the selectivity of the compound for the Mpro. Furthermore, the target compound MPD112 was docked within the binding site of the enzyme to predict the established intermolecular interactions in silico. MPD112 was subsequently tested on the HCT-8 cell line to evaluate its effect on human cells' viability, displaying good tolerability, demonstrating the promising biological compatibility and activity of a trifluoromethyl diazirine moiety in the design and development of SARS-CoV-2 Mpro binders.


Asunto(s)
Antivirales , Diazometano , Inhibidores de Proteasas , SARS-CoV-2 , Antivirales/farmacología , Antivirales/química , Diazometano/química , Diazometano/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos
10.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36555601

RESUMEN

In the panorama of sustainable chemistry, the use of green solvents is increasingly emerging for the optimization of more eco-friendly processes which look to a future of biocompatibility and recycling. The green solvent Cyrene, obtained from biomass via a two-step synthesis, is increasingly being introduced as the solvent of choice for the development of green synthetic transformations and for the production of biomaterials, thanks to its interesting biocompatibility, non-toxic and non-mutagenic properties. Our review offers an overview of the most important organic reactions that have been investigated to date in Cyrene as a medium, in particular focusing on those that could potentially lead to the formation of relevant chemical bonds in bioactive molecules. On the other hand, a description of the employment of Cyrene in the production of biomaterials has also been taken into consideration, providing a point-by-point overview of the use of Cyrene to date in the aforementioned fields.


Asunto(s)
Tecnología Química Verde , Solventes/química , Biomasa
11.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36293216

RESUMEN

The ubiquitin-proteasome pathway (UPP) is the major proteolytic system in the cytosol and nucleus of all eukaryotic cells. The role of proteasome inhibitors (PIs) as critical agents for regulating cancer cell death has been established. Aziridine derivatives are well-known alkylating agents employed against cancer. However, to the best of our knowledge, aziridine derivatives showing inhibitory activity towards proteasome have never been described before. Herein we report a new class of selective and nonPIs bearing an aziridine ring as a core structure. In vitro cell-based assays (two leukemia cell lines) also displayed anti-proliferative activity for some compounds. In silico studies indicated non-covalent binding mode and drug-likeness for these derivatives. Taken together, these results are promising for developing more potent PIs.


Asunto(s)
Antineoplásicos , Aziridinas , Neoplasias , Humanos , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Complejo de la Endopetidasa Proteasomal/metabolismo , Antineoplásicos/uso terapéutico , Aziridinas/farmacología , Aziridinas/química , Neoplasias/metabolismo , Alquilantes , Ubiquitinas
12.
Org Biomol Chem ; 20(42): 8293-8304, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36227250

RESUMEN

α,α-Difluoromethyl ketones (DFMKs) have emerged as currently investigated agents benefiting from the merging of chemico-physical features conferred by the constitutive elements (-CHF2 and carbonyl moietites). With a view to biological applications, the additional incorporation of heterocycles is a desirable property enabling the tuning of critical factors encompassing the pharmaco-dynamic and kinetic profiles. The underexplored assembling of α,α-difluoromethyl-heteroaromatic ketones is herein implemented via a conceptually intuitive Weinreb amide acylative transfer of a putative difluoromethyl-carbanion. To make the strategy productive, we adopted the commercially available TMSCHF2 pronucleophile - characterized by robust chemical stability and manipulability (bp 65 °C) - which upon Lewis-base mediated activation delivers the competent CHF2-nucleophile. The synthetic protocol was carried out on pyrazole- and isoxazole-based scaffolds, and a panel of heteroaryl-DFMKs was consequently developed as potential COX-inhibitors. In this sense, the bioisosterism deducted through docking studies between the widely expressed carboxylic group (in several clinically used COX inhibitors) and the -COCHF2 motif introduced herein supports this rationale. To confirm the docking results, all compounds were tested against both COX-1 and COX-2 enzyme isoforms showing activity in the micromolar range and a good selectivity index (SI). They were also evaluated for their biocompatibility using NIH/3T3 cells to which they did not show any significant toxicity.


Asunto(s)
Isoxazoles , Cetonas , Ratones , Animales , Cetonas/química , Inhibidores de la Ciclooxigenasa/química , Pirazoles/química , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2 , Relación Estructura-Actividad
13.
RSC Adv ; 12(18): 11548-11556, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35425078

RESUMEN

Histone deacetylase (HDAC) inhibitors are highly involved in the regulation of many pharmacological responses, which results in anti-inflammatory and anti-cancer effects. In the present work, chemoinformatic analyses were performed to obtain two potent and selective aminotriazoloquinazoline-based HDAC6 inhibitors. We unexpectedly obtained an aminotriazole from a water-driven ring opening of the triazoloquinazoline scaffold. Both compounds were evaluated as HDAC6 inhibitors, resulting in subnanomolar inhibitory activity and high selectivity with respect to class I HDAC1 and HDAC8. Importantly, the compounds were about 3- and 15-fold more potent compared to the reference compound trichostatin A. Additionally, the predicted binding modes were investigated with docking. Considering that the aminotriazole scaffold has never been embedded into the chemical structure of HDAC6 inhibitors, the present study suggests that both the aminotriazoloquinazoline and aminotriazole classes of compounds could be excellent starting points for further optimization of potential anticancer compounds, introducing such novel groups into a relevant and new area of investigation.

14.
Curr Med Chem ; 29(9): 1474-1502, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34477503

RESUMEN

The design of multi-target drugs acting simultaneously on multiple signaling pathways is a growing field in medicinal chemistry, especially for the treatment of complex diseases, such as cancer. Histone deacetylase 6 (HDAC6) is an established anticancer drug target involved in tumor cells transformation. Being an epigenetic enzyme at the interplay of many biological processes, HDAC6 has become an attractive target for polypharmacology studies aimed at improving the therapeutic efficacy of anticancer drugs. For example, the molecular chaperone Heat shock protein 90 (Hsp90) is a substrate of HDAC6 deacetylation, and several lines of evidence demonstrate that simultaneous inhibition of HDAC6 and Hsp90 promotes synergistic antitumor effects on different cancer cell lines, highlighting the potential benefits of developing a single molecule endowed with multi-target activity. This review will summarize the complex interplay between HDAC6 and Hsp90, providing also useful hints for multi-target drug design and discovery approaches in this field. To this end, crystallographic structures of HDAC6 and Hsp90 complexes will be extensively reviewed in light of discussing binding pockets features and pharmacophore requirements and providing useful guidelines for the design of dual inhibitors. The few examples of multi-target inhibitors obtained so far, mostly based on chimeric approaches, will be summarized and put into context. Finally, the main features of HDAC6 and Hsp90 inhibitors will be compared, and ligand- and structure-based strategies potentially useful for the development of small molecular weight dual inhibitors will be proposed and discussed.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/uso terapéutico , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Transducción de Señal
15.
ACS Omega ; 6(34): 21843-21849, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34497879

RESUMEN

Since the approval of three hydroxamic acid-based HDAC inhibitors as anticancer drugs, such functional groups acquired even more notoriety in synthetic medicinal chemistry. The ability of hydroxamic acids (HAs) to chelate metal ions makes this moiety an attractive metal binding group-in particular, Fe(III) and Zn(II)-so that HA derivatives find wide applications as metalloenzymes inhibitors. In this minireview, we will discuss the most relevant features concerning hydroxamic acid derivatives. In a first instance, the physicochemical characteristics of HAs will be summarized; then, an exhaustive description of the most relevant methods for the introduction of such moiety into organic substrates and an overview of their uses in medicinal chemistry will be presented.

16.
Molecules ; 26(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34361819

RESUMEN

One of the main current strategies for cancer treatment is represented by combination chemotherapy. More recently, this strategy shifted to the "hybrid strategy", namely the designing of a new molecular entity containing two or more biologically active molecules and having superior features compared with the individual components. Moreover, the term "hybrid" has further extended to innovative drug delivery systems based on biocompatible nanomaterials and able to deliver one or more drugs to specific tissues or cells. At the same time, there is an increased interest in plant-derived polyphenols used as antitumoral drugs. The present review reports the most recent and intriguing research advances in the development of hybrids based on the polyphenols curcumin and resveratrol, which are known to act as multifunctional agents. We focused on two issues that are particularly interesting for the innovative chemical strategy involved in their development. On one hand, the pharmacophoric groups of these compounds have been used for the synthesis of new hybrid molecules. On the other hand, these polyphenols have been introduced into hybrid nanomaterials based on gold nanoparticles, which have many potential applications for both drug delivery and theranostics in chemotherapy.


Asunto(s)
Productos Biológicos/uso terapéutico , Curcumina/uso terapéutico , Neoplasias/tratamiento farmacológico , Resveratrol/uso terapéutico , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/uso terapéutico , Productos Biológicos/química , Curcumina/química , Sistemas de Liberación de Medicamentos , Oro/química , Humanos , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Resveratrol/química , Estilbenos/química
17.
Biomolecules ; 11(4)2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921886

RESUMEN

The uncontrolled spread of the COVID-19 pandemic caused by the new coronavirus SARS-CoV-2 during 2020-2021 is one of the most devastating events in the history, with remarkable impacts on the health, economic systems, and habits of the entire world population. While some effective vaccines are nowadays approved and extensively administered, the long-term efficacy and safety of this line of intervention is constantly under debate as coronaviruses rapidly mutate and several SARS-CoV-2 variants have been already identified worldwide. Then, the WHO's main recommendations to prevent severe clinical complications by COVID-19 are still essentially based on social distancing and limitation of human interactions, therefore the identification of new target-based drugs became a priority. Several strategies have been proposed to counteract such viral infection, including the repurposing of FDA already approved for the treatment of HIV, HCV, and EBOLA, inter alia. Among the evaluated compounds, inhibitors of the main protease of the coronavirus (Mpro) are becoming more and more promising candidates. Mpro holds a pivotal role during the onset of the infection and its function is intimately related with the beginning of viral replication. The interruption of its catalytic activity could represent a relevant strategy for the development of anti-coronavirus drugs. SARS-CoV-2 Mpro is a peculiar cysteine protease of the coronavirus family, responsible for the replication and infectivity of the parasite. This review offers a detailed analysis of the repurposed drugs and the newly synthesized molecules developed to date for the treatment of COVID-19 which share the common feature of targeting SARS-CoV-2 Mpro, as well as a brief overview of the main enzymatic and cell-based assays to efficaciously screen such compounds.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Peptidomiméticos/farmacología , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Antivirales/química , COVID-19/virología , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Descubrimiento de Drogas , Reposicionamiento de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Peptidomiméticos/química , Inhibidores de Proteasas/química , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Bibliotecas de Moléculas Pequeñas/química
18.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573283

RESUMEN

The synthesis of α-fluorinated methyl ketones has always been challenging. New methods based on the homologation chemistry via nucleophilic halocarbenoid transfer, carried out recently in our labs, allowed us to design and synthesize a target-directed dipeptidyl α,α-difluoromethyl ketone (DFMK) 8 as a potential antiviral agent with activity against human coronaviruses. The ability of the newly synthesized compound to inhibit viral replication was evaluated by a viral cytopathic effect (CPE)-based assay performed on MCR5 cells infected with one of the four human coronaviruses associated with respiratory distress, i.e., hCoV-229E, showing antiproliferative activity in the micromolar range (EC50 = 12.9 ± 1.22 µM), with a very low cytotoxicity profile (CC50 = 170 ± 3.79 µM, 307 ± 11.63 µM, and 174 ± 7.6 µM for A549, human embryonic lung fibroblasts (HELFs), and MRC5 cells, respectively). Docking and molecular dynamics simulations studies indicated that 8 efficaciously binds to the intended target hCoV-229E main protease (Mpro). Moreover, due to the high similarity between hCoV-229E Mpro and SARS-CoV-2 Mpro, we also performed the in silico analysis towards the second target, which showed results comparable to those obtained for hCoV-229E Mpro and promising in terms of energy of binding and docking pose.


Asunto(s)
Antivirales/química , Coronavirus Humano 229E/metabolismo , Dipéptidos/química , Cetonas/química , Células A549 , Antivirales/farmacología , Sitios de Unión , COVID-19/patología , COVID-19/virología , Línea Celular , Proteínas M de Coronavirus/química , Proteínas M de Coronavirus/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Termodinámica , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/metabolismo , Replicación Viral/efectos de los fármacos
19.
Molecules ; 25(17)2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32899354

RESUMEN

Peptidyl fluoromethyl ketones occupy a pivotal role in the current scenario of synthetic chemistry, thanks to their numerous applications as inhibitors of hydrolytic enzymes. The insertion of one or more fluorine atoms adjacent to a C-terminal ketone moiety greatly modifies the physicochemical properties of the overall substrate, especially by increasing the reactivity of this functionalized carbonyl group toward nucleophiles. The main application of these peptidyl α-fluorinated ketones in medicinal chemistry relies in their ability to strongly and selectively inhibit serine and cysteine proteases. These compounds can be used as probes to study the proteolytic activity of the aforementioned proteases and to elucidate their role in the insurgence and progress on several diseases. Likewise, if the fluorinated methyl ketone moiety is suitably connected to a peptidic backbone, it may confer to the resulting structure an excellent substrate peculiarity and the possibility of being recognized by a specific subclass of human or pathogenic proteases. Therefore, peptidyl fluoromethyl ketones are also currently highly exploited for the target-based design of compounds for the treatment of topical diseases such as various types of cancer and viral infections.


Asunto(s)
Clorometilcetonas de Aminoácidos/síntesis química , Fenilalanina/análogos & derivados , Inhibidores de Serina Proteinasa/síntesis química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Clorometilcetonas de Aminoácidos/farmacología , Química Farmacéutica/métodos , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , VIH/efectos de los fármacos , VIH/enzimología , Proteasa del VIH/química , Proteasa del VIH/metabolismo , Humanos , Cinética , Fenilalanina/síntesis química , Fenilalanina/farmacología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Inhibidores de Serina Proteinasa/farmacología , Relación Estructura-Actividad , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo
20.
Org Lett ; 22(19): 7629-7634, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32910659

RESUMEN

The sequential installation of a carbenoid and a hydride into a carbonyl, furnishing halomethyl alkyl derivatives, is reported. Despite the employment of carbenoids as nucleophiles in reactions with carbon-centered electrophiles, sp3-type alkyl halides remain elusive materials for selective one-carbon homologations. Our tactic levers on using carbonyls as starting materials and enables uniformly high yields and chemocontrol. The tactic is flexible and is not limited to carbenoids. Also, diverse carbanion-like species can act as nucleophiles, thus making it of general applicability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...